

- Kutta condition implies upper & lower surface velocities are equal at the trailing edge:

J

 \rightarrow no normal flow condition is : $V_{\omega} \sin \alpha + \omega(\alpha) = 0$

for small angles : $V_{\infty}\alpha + \omega(x) = 0$

27 J 0	((§) d ^z (x- <u></u> 5)) =	V,	~ C	X		Fur	rdan fo	nent r	al I sym	ihir met	oer mic	ofoi CO	l e se	equ	sti	o'n				
								<u>ب</u>	nist	be	ટન	red	Suk	ojea	t	to	Ku	tta.	co	ndit	io/
- To solue t	is equat	ion,	vse	tra	ursfo	or n v	atioř	L 6	5 (han	ge	ξ.	→ (9							
							605				/										
			X :	=	<u>c</u> (2	(1	- (0	sθo)		$\theta = 0$ Leading edge	ξ. 	c/2		edge						
→ substitutin	lg ∶		<u>і</u> Бл ∫	I.	Yle)su	i0 d	Ð	5	Vc	, α				θ	is ,	N	t	pol	ar i	
			u j	0						ed 1								it': plifi		sea integ	ral
						~		able	e t	io S		د , ,									
> fot a Symn	ietric a	erofoil		Y	(0)) =	2x	Va	(1	+ co: Sir19	s 0)										
										SIAM											
	· · · · ·		÷ ·											F -							
to prove that		he sol			ve n	eed	to	Shou			· C.i.	s the	еди (х) →	ati	on at	: LE					
to prove that 1. It satisfies 2. $\gamma(\pi) = 0$	is funda	he sol mental	this	, ae	ve n refoi	eed Lei	to quali	shou on			· C.i.	s the	eqµ (x) →	ati	on : at	: LE					
1. It satisfi 2. γ(π) = (is funda	ke sol mental Cutta c	thin Condi	oe tion	ve n rofoil is	eed Lee Eat	to qualu	Shou on d			· C.i.	s the	eqµ (x) →	ati	or :	: (Ę					
1. It satisfi 2. γ(π) = (vs funda D → 1	ke sol mental Cutta c	thin Condi	oe tion	ve n rofoil is	eed Lee Eat	to qualu	Shou on d			· C.i.		eqµ (x) →	atii	ot	: (E 		¥6	x) ->	· O al	t T(
1. It satisfi 2. γ(π) = (rs funda D → 1 T transfo	he sol mental cutta c	thin Condi	oe tion	ve n rofoil is	eed Lee Eat	to qualu	Shou on d			· C.i.	s the	equ () →	00	ot	(Ę			x,) →		է T(
1. It satisfi 2. γ(π) = (rs funda D → 1 T transfo	he sol mental cutta c	thin Condi	oe tion	ve n rofoil is	eed Lee Eat	to qualu	Shou on d			· C.i.		eqµ (x) →	00	ot				x) →		5 TI
1. It satisfi 2. $\gamma(\pi) = 0$ Lift Oistid	rs funda D → 1 T transfo	he sol mental cutta c	thin Condi	oe tion	ve n rofoil is	eed Lee Eat	to qualu	Shou on d			· C.i.	5 the 	eqµ (x.) →	00	ot				x) ->		
1. It satisfi 2. γ(π) = (Lift Oistid Method	s funda -> 1 -> 1 	ke sol mental Cutta (rmalio :	thin >ondi n vse	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ve n is TE	eed cot	to pustu isfé	Shou on d J t			×f. γ(x)			0.55 Ne			x				
1. It satisfi 2. $\gamma(\pi) = 0$ Lift Oistid	s funda -> 1 -> 1 	he sol mental cutta c	thin >ondi n vse	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ve n is TE	eed cot		Shou on d J t			×f. γ(x)			0.55 Ne			x				

Find total lift using kutta - Jovkowski theorem

$$L = P_0 \vee_0 \Gamma = JlaCP_0 \vee_0^2$$

$$C_L = \frac{L}{\frac{1}{2} \rho_{-} v_0^+ c} \longrightarrow C_L = 0.0a = 2JLa$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \ll$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \leftrightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

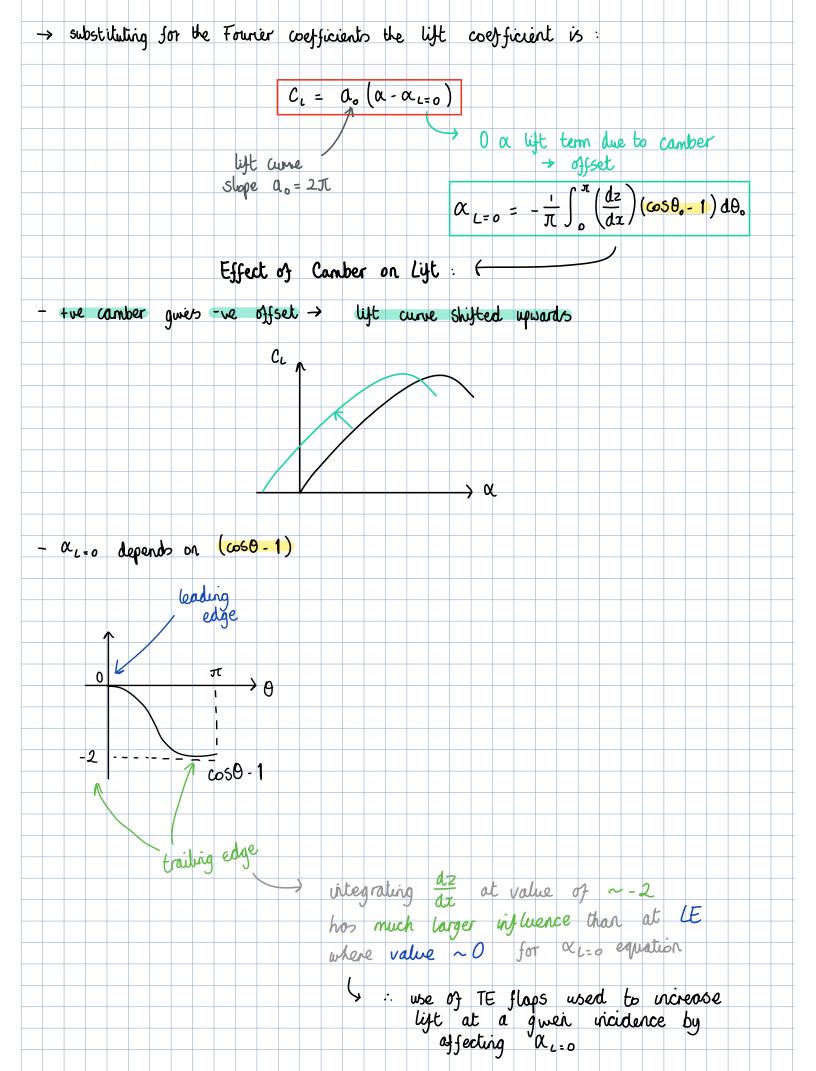
$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$


$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

$$P_0 = 2JL \rightarrow gradient of C_L \vee S \rightarrow$$

two reference points:

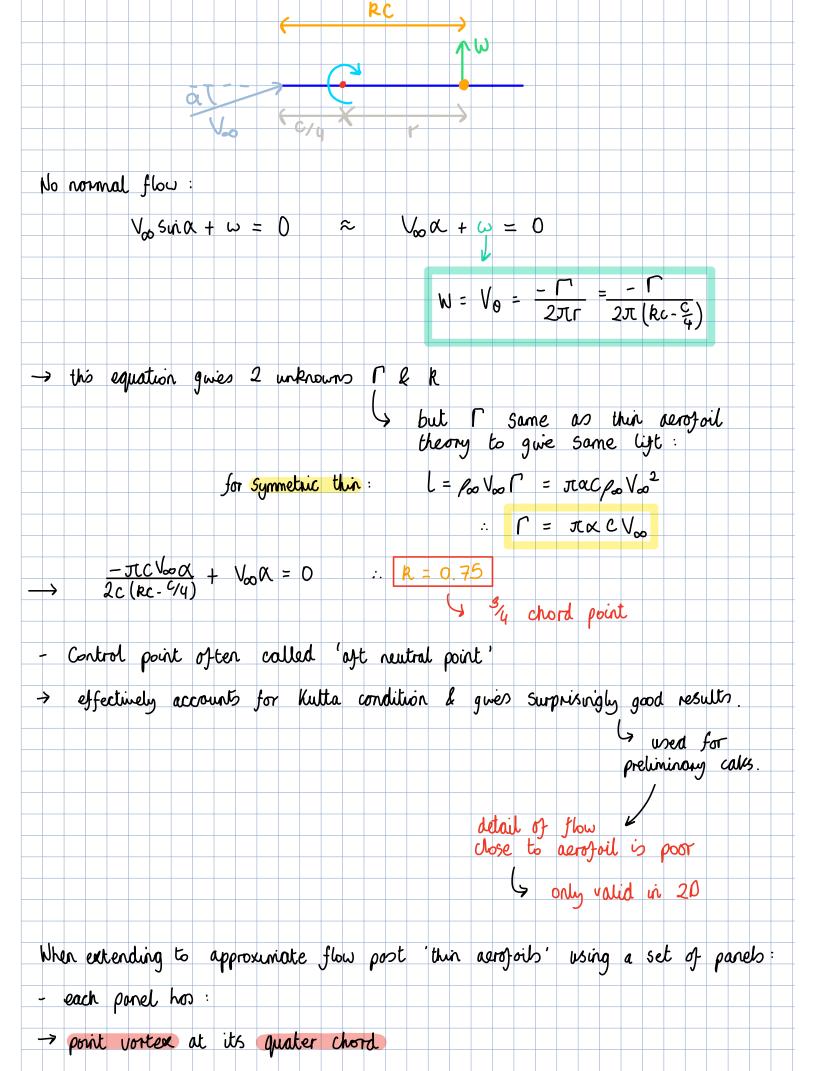
$$\overline{x}_{cq} = -Cn_{ce} = 0.25$$

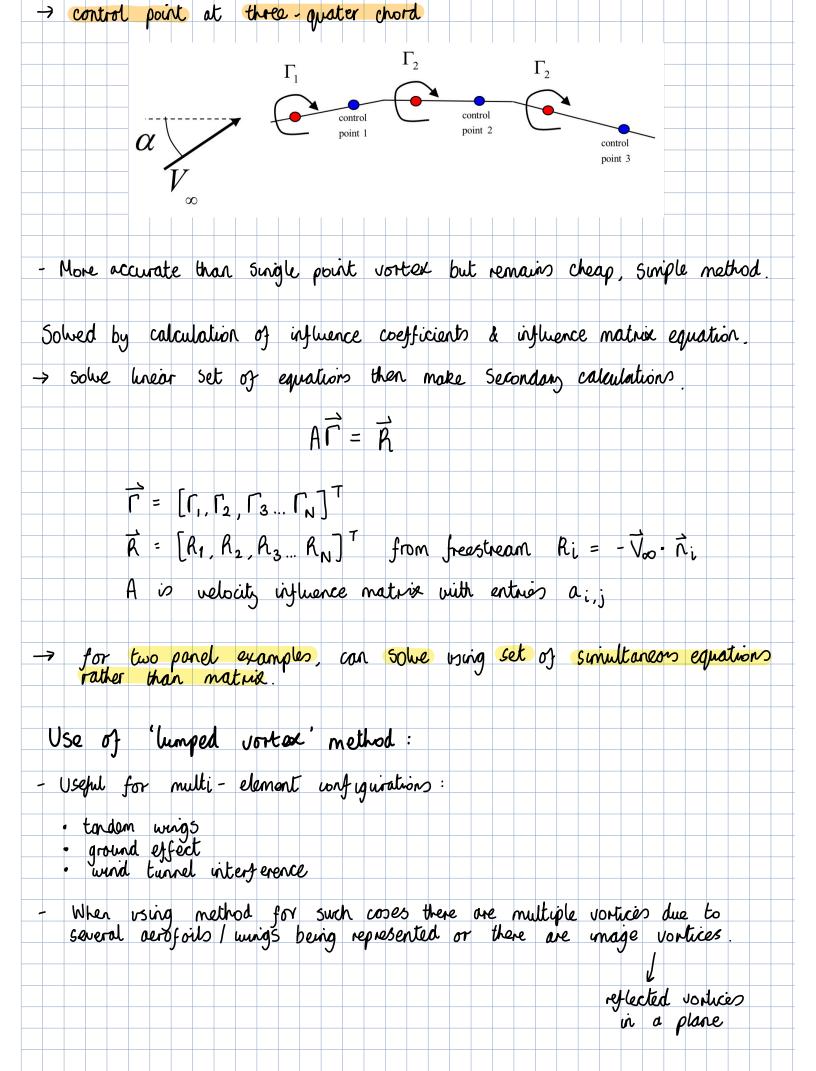
 $\overline{x}_{cq} = -Cn_{ee} = 0.25$
 $\overline{x}_{cq} = -Cn_{ee} = -Cn_{ee} = 0.25$
 $\overline{x}_{cq} = -Cn_{ee} = -Cn_{ee} = 0.25$
 $\overline{x}_{cq} = -Cn_{ee} =$

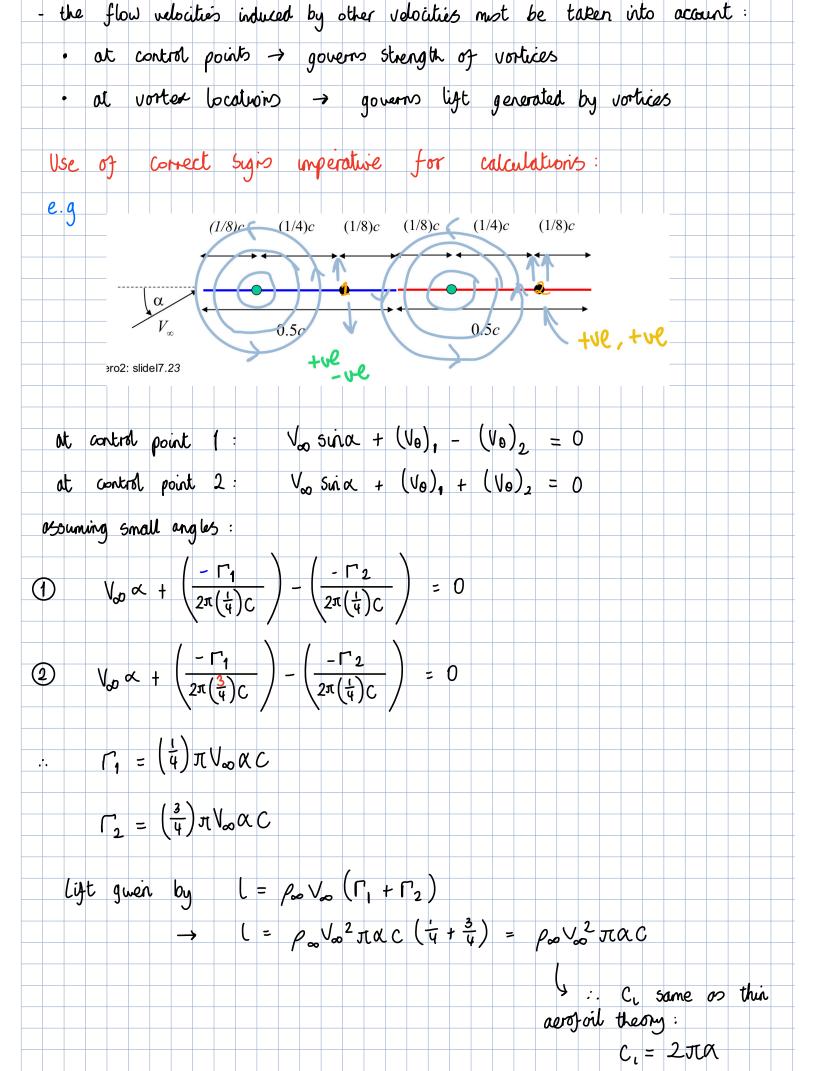
Effect of Camber on Pitching Moment:
- Similar analysis as before gives

$$C_{m_{L}e} = -\frac{\pi}{2} \left(A_{0} + A_{1} - \frac{A_{2}}{2} \right)$$

or in terms of ligt coefficient $C_{m_{L}e} = -\frac{\pi}{2} \left(A_{1} - A_{2} \right)$
or in terms of ligt coefficient $C_{m_{L}e} = -\frac{C_{L}}{2} - \frac{\pi}{2} \left(A_{1} - A_{2} \right)$
or in terms of ligt coefficient $C_{m_{L}e} = -\frac{C_{L}}{2} - \frac{\pi}{2} \left(A_{1} - A_{2} \right)$
 $= 0$ offset due to 'zero lift
 $pitching moment' C_{m_{D}}$
 $= two moment reference points:
 $\overline{x}_{cp} = -\frac{C_{m_{L}e}}{C_{L}} = 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= \frac{1}{C_{L}}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{2} \right) \right\}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{2} \right) \right\}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{3} \right) \right\}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} - A_{2} \right) \right\}$
 $= 0.25 \left\{ 1 + \frac{\pi}{C_{L}} \left(A_{1} -$$


-> Kutta Condition needs to be enforced.


, we use Katz & Plotkin nethod


- When applying new method we're developing a thin aerofoil represented by N panels on camper line we will usually just
 - · place the vortices
 - opply boundary condition
 - · solve for vortex strengths
- Kutta condition not directly applied. Have already applied at TE in analytic thin aerofoil to get good lift predictions.
- Instead, match that lift from analytic by enforcing suitable choices for location of singularities & control points
 - apply kutta condition indirectly or implicitly
- Appropriate locations for singularities & control points established by looking at this symmetric aerofoil with N=1
- -> we model so that this has same lift as thin aerofoil theory, since experiment agreement good.
- -> this means that the circulation of the point vortex must equal the total circulation of this aerofoil sheet.
 - > we know vortex Strength we want but need to know where the vortex and control point have been located to get this value as a solution of the problem :
- Since the lift of the thin symmetric aerofoil acts at the Centre of pressure $(\frac{1}{4}c)$ the point vortex, strength Γ , is placed at the panel quater chord point.

_	1	No	M	m	al	fle	ม	' not	,	20	lie	d.	at	1	E	ø.	>	lift	DH	du	tic	^	ωМ	ny	b	e	шo	na					
						<u> </u>				T								J.	ſ							-		J					
-		We		sm	t	to		find	a	l	00	tio	in.	of (NO	trol	, pr	int	th	at	q	wie.) (ю	the		kn	νω	li	H	JO	ilue	
							Ű																		-					J			

<u>c/4</u>

